
SimpleLock: Fast and Accurate Hybrid Data Race Detector

Misun Yu∗ †, Sang-Kyung Yoo†, Doo-Whan Bae†
∗Electronics and Telecommunications Research Institute

msyu@etri.re.kr
†KAIST

{msyu, skyoo94, bae}@kaist.ac.kr

Abstract—Data races are one of the major causes of concur-
rency bugs in multithreaded programs, but they are hard to find
due to nondeterministic thread scheduling. Data race detectors
are essential tools that help long-suffering programmers to locate
data races in multithreaded programs. One type of detectors
precisely detects data races but is sensitive to thread scheduling,
whereas another type is less sensitive to thread scheduling but
reports a considerable number of false positives.

In this paper, we propose a new dynamic data race detector
called SimpleLock that accurately detects data races in a schedul-
ing insensitive manner with low execution overhead. We reduce
execution overhead by using two assumptions. The first is that
most data races are caused by the accessing of shared variables
without locks. The second is that two accesses that cause a data
race have not a long distance between them in an execution trace.

The results of experiments conducted on the RoadRunner
framework confirm that these assumptions are valid and that
our SimpleLock detector can efficiently and accurately detect
real and potential data races in one execution trace. The results
also indicate that the execution overhead of SimpleLock is not
much higher than that of FastTrack, the fastest happens-before
race detector.

I. INTRODUCTION

As multicore computers become more popular and
widespread, multithreading is increasing in importance be-
cause it can maximize the computing power of multicore
processors. However, finding and resolving concurrency bugs
caused by concurrent access to shared memory is very difficult
due to nondeterministic thread interleaving. Data race is one
of the main causes of concurrency bugs in multithreaded
programs. A data race occurs in a multithreaded program when
at least two different threads access the same memory location
without an ordering constraint enforced between the accesses,
such that at least one of the accesses is a write [1]. Although
data races do not always cause failures in programs, they can
directly or indirectly lead to incorrect results or crashes in
the future. Therefore, automatic race detection tools that can
accurately and quickly detect data races are essential.

Recent race detection tools are based on dynamic detection
techniques that use the information generated during program
execution. Dynamic data race detection techniques categorized
into three types: Lockset, happens-before (HB) and hybrid.
Lockset-based detectors, which originated from Eraser [2], are
insensitive to thread scheduling but generate false positives. In
contrast, happens-before detectors, which are based on vector
clocks [3]–[7], generate no false positives but are sensitive to
thread scheduling. High overhead time was once a weakness of

vector-clock detection techniques as well; however, FastTrack
[3] reduced the time to nearly the same level as that of the
Lockset technique. Starting from these facts, recent hybrid
detectors [8], [9] try to find more data races than happens-
before detectors in one execution trace with low execution
overhead using the two detection techniques. Although these
hybrid techniques detect more data races than their predeces-
sors, they generate false positives or their overhead are too
high to be used frequently.

In this paper, we propose a fast hybrid data race detection
algorithm that detects real and potential data races in one
execution trace. Previous Lockset-based detectors performed
intersection operations between two sets of locks to find
accesses not protected by consistent locks - more specifically,
those protected by different locks as well as those not protected
by any lock. We remove the intersection operation based on
the assumption that most data races are caused by accesses to
shared variables that are not protected by locks. In addition,
we significantly reduce execution overhead by utilizing the fact
that two accesses making a data race have not a long distance
between them in an execution trace.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of our detection technique. Section III
reviews preliminary concepts associated with the two race
detection algorithms that form the basis of our proposed algo-
rithms. Section IV describes our detection technique in detail,
and Section V presents our experimental results. Section VI
discusses related work. Section VII summarizes and concludes
this paper.

II. DETECTION TECHNIQUE OVERVIEW

A. Motivation and Solution

The Lockset technique effectively detects data races caused
by inconsistent lock protection due to its insensitivity to
thread scheduling. However, it generates many false positives.
Conversely, FastTrack is capable of precisely detecting all data
races in one execution trace, but due to its sensitivity to thread
scheduling, it can miss possible data races that can be detected
by scheduling insensitive detectors. The design objectives of
SimpleLock are as follows:
• To detect real and potential data races that can be missed

by happens-before detectors in one execution trace, and
to provide coverage comparable to that of state-of-the-art
accurate hybrid race detectors.

• To provide execution overhead comparable to that of
FastTrack to facilitate frequent usage during the software
development process.

To achieve these objectives, we analyzed the cause of false
positives by Lockset and missing potential data races by
happens-before detectors. Main reason for false positives by
Lockset is its neglect of the deterministic execution order
between two threads by events such as the starting and
resuming of thread execution. As a result, it cannot exactly
identify concurrently executable accesses by different threads.

Figure 1 shows the execution trace of two threads. The ac-
cesses from 1.3 to 1.6 by t1 are executed nondeterministically
with the accesses from 2.1 to 2.3 by t2. The access at 1.1 by t1
before t2.start() cannot be interleaved with all the accesses of
t2, so write access at 1.1 must be excluded from the Lockset
operation.

Of note is the fact is that VC-based detectors cannot detect
any data races in this execution trace despite the fact that there
are potential data races between 1.3 and 2.2. If write access in
line 1.3 is executed after 1.6, happens-before detectors report
a data race. Due to their nature, VC-based detectors may miss
the clock information for accesses that have executed before
synchronization operations by lock acquire and release, such
as the write access at line 1.3 in this example.

Thread t1

1.1 write x
1.2 t2.start()
1.3 write x
1.4 lock l1
1.5 write x
1.6 unlock l1
.
.

.

Thread t2

.

.

.

.

.

.
2.1 lock l1
2.2 read x

2.3 unlock l1

Figure 1. An example of thread interleaving

The main reason for this is that happens-before detectors
do not discriminate among various different types of synchro-
nization events such as the following:
• Synchronization events that enforce deterministic order

among threads, such as thread start and awaking threads
(start(), and notify()/notifyAll() calls in Java).

• Synchronization events that do not enforce deterministic
order among threads, such as lock acquire and lock
release.

On the basis of this analysis, we come up with a Lockset-
based technique that discriminates the above two different
types of events to reduce false positives. We adopted a similar
approach to Acculock-Multi [9], a hybrid race detector that
accurately detects potential data races. However, SimpleLock
incurs low execution overhead while maintaining virtually the
same detection coverage.

B. Contributions

Our contributions are as follows:
• We reduce execution overhead by using two assumptions:

1) At least one of the accesses causing a data race is

not protected by a lock, and 2) the distance between the
accesses is not long.

• We prove empirically that our two assumptions are valid.
• We propose a new detection algorithm that accurately

detects more data races than FastTrack, while incurring
a lower execution overhead than a conventional state-of-
the-art hybrid detector.

• We implement our proposed detector, SimpleLock, which
uses our proposed algorithm, and two state-of-the-art
race detectors - FastTrack and AccuLock-Multi on Road-
Runner [10] framework, and compare their performance
in terms of coverage, accuracy and execution overhead
using 11 benchmark programs from the Parallel Java
Benchmark suite (PJBench) [11].

III. BACKGROUND

A. Vector Clock, Djit+ and FastTrack

In VC-based detectors, a vector clock, [12] VC: Tid→Nat,
records the clocks of all threads in a program. Two vectors,
V1 and V2, are partially-ordered (v) if V1 is smaller than or
equal to V2 in a point-wise manner. Their join operation (t)
is used to get a point-wise maximum:

V1 v V2 iff ∀t.V1(t) ≤ V2(t)
V1 t V2 = λt.max(V1(t), V2(t))

In Djit+ [4], each thread maintains vector clock Ct such that,
for any thread u, the clock entry Ct(u) records the clock for
the last operation of thread u that happens before the current
operation of thread t. Additionally, the algorithm maintains
a vector clock Lm for each lock m. The clock of a thread
is updated when a synchronization action is performed using
Lm. For example, if a thread t subsequently acquires m, the
algorithm updates Ct to Ct t Lm , since subsequent operations
by thread t would now happen after that release operation. In
addition, Ct[t] is incremented, and Lm[t] is updated to Ct[t]
when the release operation is performed.

Djit+ keeps two vector clocks, Wx and Rx, for read/write
access to a shared variable x. When a read/write access to
x occurs during program execution, a check for data races
on that variable is done. Rx(t) and Wx(t) record the clocks
of the last read and the last write for shared variable x by
thread t. If the current access is a read from x and Wx(t) is
partially-ordered with the vector clock of the current active
thread (Wx(t) v Cu), the read access is not a data race. If
the current access is a write from x and Rx(t) and Wx(t) are
partially-ordered with the vector clock of the current active
thread (Wx(t) v Cu and Rx v Cu), the write access is not a
data race.

The problem with Djit+ and other VC-based race detec-
tors is high execution overhead. All vector clock operations
and memory space increase in proportion to the number of
threads, that is, VC-based data race detectors require O(n)
times. FastTrack reduced most O(n) VC operations to O(1) by
introducing epoch-VC comparison (�).

Algorithm 1 shows the FastTrack notation and algorithm.
We introduces a funtion E(t) that returns current epoch of

thread t. FastTrack exploits following observations: (1) all
writes to x are totally ordered by the happens-before relation
(assuming no races are detected so far), and so it records
the thread identifier (tid) and its clock only about the very
last write to x (2) Read operations on thread-local and lock-
protected data are also totally ordered (assuming no races have
been detected) and so FastTrack records only the tid and the
clock of the last read to the data. FastTrack uses the new
representation called epoch, which includes only a clock and
tid. Epoch is used to record totally ordered last write and read.

Algorithm 1 FastTrack
Acquire:

1: Ct ← Ct t Lt

Release:
2: Lt = Ct
3: Ct[t] = Ct[t] + 1

Read:
4: if Rx 6= E(t) then
5: report a warning unless Wx � Ct . write-read race
6: if Rx = 1 ∧ Rx � Ct then
7: Rx ← E(t)
8: else
9: Rx ← Ct

10: end if
11: end if

Write:
12: if Wx 6= E(t) then
13: report a warning unless Wx � Ct . write-write race
14: if |Rx| = 0 then
15: report a warning unless Rx � Ct . read-write race
16: else
17: report a warning unless Rx v Ct . read-write race
18: end if
19: Rx ← ∅
20: Wx ← E(t)
21: end if

B. LockSet and Eraser

The basic idea underlying Lockset is that locks should
consistently protect each access by threads to every shared
variable. Algorithm 2 shows the basic algorithm for Lockset.
For each shared variable x, Lockset maintains a candidate set
Lx containing all the locks that have consistently protected
every access to x so far and, for each thread t, Lt holds the
set of all the locks acquired by t at that time.

Algorithm 2 Lockset
1: For each x, initialize Lx to the set of all locks.
2: On each access to x by thread t,
3: Lx ← Lx ∩ Lt
4: if Lx = ∅ then
5: report a warning.
6: end if

Although Eraser tries to reduce false positives by using a
state machine to process thread-local and read-shared data, it
generates a lot of false positives as well.

IV. SIMPLELOCK

SimpleLock is a hybrid data race detector that combines
happens-before and Lockset to accurately and quickly detect

data races in one execution trace. In this paper, we refer to all
real and potential data races simply as data races.

The first basic idea used by SimpleLock to reduce execution
overhead is to find two unordered nondeterministic accesses
by two different threads in which at least one is a write, and
at least one is not protected by a lock. The second basic
idea, which is used by SimpleLock for accurate detection with
high coverage, is to use fixed-size queues to record a list of
the minimum number of locks that have protected read/write
access for each thread during the same clock period.

Like conventional happens-before detectors, each thread has
a vector clock. The clock is updated when all the synchroniza-
tion events that make the execution order of threads determin-
istic have occurred (Algorithms 3 and 4). In SimpleLock,
lock acquire/release events do not change the clocks because
they do not make any deterministic execution order between
threads.

SimpleLock has several algorithm-variables. The first one
is LockCntt, which keeps track of the number of locks held
by the current thread t. lockCountt is initialized to zero and
is incremented when t acquires a lock and decremented when
t releases a lock (Algorithm 5 and 6). The other variables
are WCx[MAX] and RCx[MAX], which keep a list of the
minimum number of locks protecting the writes and reads,
respectively, of a shared variable x during the same clock
period in the form of <clock, lockCount> pairs. MAX is the
maximum number of threads. WCx[t] and RCx[t] are fixed
length (Q_LEN) queues.

The queue provides two variables "first" and "last" to
represent its first and last element. In addition, the queue
provides a function called "updateLast (p)" to update the last
element to p and "addLast (p)" to add new element p to the
tail of the queue. The update policy for WCx and RCx and
the detection algorithms are follows:

Read/Write Lock Count Update for Variables
RCx[t] keeps a list of the minimum number of locks that

have protected read access to shared variable x by t during the
same clock period. When a read access to x by a thread occurs,
SimpleLock checks whether the clock of the last element of
RCx[t] is the same as the current clock. Because the element
is always added to the end of the queue and the clock is not
decremented, SimpleLock only checks the last element. If the
clock of the last element is the same as the current clock,
SimpleLock updates its lockCount to the minimum number
between them. Otherwise, a new pair <E(t), lockCountt> is
added to the tail of RCx[t].
WCx[t] keeps a list of the minimum number of locks that

have protected write access to shared variable x by t during
the same clock period. The update policy of WCx[t] is similar
to that of RCx[t]. When a write access to x by thread t occurs,
SimpleLock checks whether the clock of the last element of
WCx[t] is the same as the current clock. If the clock of the
last element is the same as the current clock, SimpleLock
updates its lockCount to the minimum number between them.
Otherwise, a new pair <E(t), lockCountt> is added to the tail

of WCx[t].
In addition, after updating WCx[t], SimpleLock checks

whether the clock of the last element of RCx[t] is the same
as the current clock and whether its lockCount is larger than
the current one. If the check evaluates to true, SimpleLock
removes the element to reduce the checking overhead.

Detecting Write-Read Races
When a read access by thread t occurs, SimpleLock

searches for an element whose clock is not partially ordered
with the clock of t in WCx[t

′] for each thread t′. If there is
such an element and its lockCount or lockCountt is zero,
SimpleLock reports a warning, as indicated at line 15 of
Algorithm 7.

Detecting Write-Write Races
When a write access by thread t occurs, SimpleLock

searches for an element whose clock is not partially ordered
with the clock of t in WCx[t

′] for each thread t′. If there is
such an element and its lockCount or lockCountt is zero,
SimpleLock reports a warning, as indicated at line 19 of
Algorithm 8.

Detecting Read-Write Races
When a write access by thread t occurs, SimpleLock

searches for an element whose clock is not partially ordered
with the clock of t in RCx[t

′] for each thread t′. If there is
such an element and its lockCount or lockCountt is zero,
SimpleLock reports a warning, as indicated at line 26 of
Algorithm 8.

Algorithm 3 Fork
1: Cu ← Cu ∪ Ct . thread t forks thread u
2: Cu[t]← Cu[t] + 1

Algorithm 4 Notify/NotifyAll
1: Cu ← Cu ∪ Ct . thread t wakes up waiting thread(s) u
2: Cu[t]← Cu[t] + 1
3: Ct[t]← Ct[t] + 1

Algorithm 5 Acquire
1: LockCntt = LockCntt + 1

Algorithm 6 Release
1: LockCntt = LockCntt − 1

Missing Data Races
SimpleLock finds data races by checking for the existence

of locks protecting an access. As a result, if all accesses have
at least one lock protecting them, no warnings are reported.
Figure 2 shows one such example. The number of locks
protecting access is always greater than zero. Thus, the data
race at line 2.2 is not reported. However, our experiments show
that such cases are rare.

Algorithm 7 Read
1: rdLast← RCx[t].last
2: if rdLast.epoch 6= E(t) then
3: RCx[t].addLast(<E(t), lockCntt>)
4: if |RCx[t]| > Q_LEN then
5: remove RCx[t].first
6: end if
7: else
8: if rdLast.epoch = E(t)∧ rdLast.lockCount > lockCntt

then
9: RCx[t].updateLast(<E(t), lockCntt>)

10: end if
11: end if
12: for all thread t′ in WCx do
13: for all <epoch, lockCnt> ∈WCx[t

′] do
14: if epoch � Ct[t] ∧ (lockCnt = 0 ∨ lockCntt) then
15: report a warning. . write-read race
16: end if
17: end for
18: end for

Algorithm 8 Write
1: wrLast←WCx[t].last
2: if wrLast.epoch 6= E(t) then
3: WCx[t].addLast(<E(t), lockCntt>)
4: if |WCx[t]| > Q_LEN then
5: remove WCx[t].first
6: end if
7: else
8: if (wrLast.epoch = E(t)) ∧ (wrLast.lockCount >

lockCntt) then
9: WCx[t].updateLast(<E(t), lockCntt>)

10: end if
11: end if
12: rdLast← RCx[t].last
13: if rdLast.epoch = E(t)) ∧ (rdLast.lockCount > lockCntt)

then
14: remove WCx[t].last
15: end if
16: for all thread t′ in WCx do
17: for all <epoch, lockCnt> ∈WCx[t

′] do
18: if epoch � Ct[t] ∧ (lockCnt = 0 ∨ lockCntt) then
19: report a warning. . write-write race
20: end if
21: end for
22: end for
23: for all thread t′ in RCx do
24: for all <epoch, lockCnt> ∈ RCx[t

′] do
25: if epoch � Ct[t] ∧ (lockCnt = 0 ∨ lockCntt) then
26: report a warning. . read-write race
27: end if
28: end for
29: end for

Thread t1

1.1 lock l1
1.2 write x
1.3 unlock l1
.
.

.

Thread t2

.

.

.
2.1 lock l2
2.2 write x /* No Warning */
2.3 unlock l2

Figure 2. Missing Data Race

Table I
BENCHMARK CONFIGURATION

Name Specification
avrora Simulation and analysis tools for AVR micro-controllers
luindex Text indexing tool
lusearch Text search tool
sunflow Implementation of a classic Cornell box rendering; a simple

scene comprising two teapots and two glass spheres within
an illuminated box

batik SVG toolkit produced by the Apache foundation
cache4j Fast thread-safe implementation for caching Java objects
elevator Simple elevator simulation program without GUI
hedc Web-crawler from ETH
sor Implementation of successive over-relaxation
tsp Implementation of Traveling Sales Person (TSP) algorithm
weblech Web site download tool in Java

Table II
BENCHMARK RESULTS

Program
of warnings Execution overhead

FT SL SL’ AL FT SL SL’ AL

avrora 3 4 4 4 4.25 7.5 110.03 251.87
luindex 1 1 1 1 6.63 9.29 10.3 11.99
lusearch 0 2 2 2 4.49 9.19 4.49 11.69
sunflow 5 31 31 31 33.92 60.59 74.73 106.63

batik 0 0 0 0 2.82 3.55 4.07 3.89
cache4j 2 8 8 8 1.17 1.27 1.43 1.27
elevator 0 0 0 0 1.02 1.02 1.02 1.02

hedc 4 4 4 4 1.15 1.02 1.01 1.13
sor 0 0 0 0 11.62 10.12 44.99 73.69
tsp 0 0 0 0 21 15.42 21.05 21.26

weblech 3 4 4 4 1.28 1.19 1.32 1.46

Average 2.7 5.4 5.4 5.4 8.12 10.92 24.95 44.17

V. EXPERIMENTAL EVALUATION

We evaluated the performance of SimpleLock in terms of
execution overhead and the number of reported data races,
and compared the results with those of two other state-of-
the-art dynamic data race detectors using 11 Java benchmark
programs. The two other detectors compared were FastTrack
(FT) and Acculock-Multi (AL). FastTrack is the fastest data
race detector for Java programs, while Acculock-Multi is
an accurate hybrid detector. All detectors, including ours,
were implemented on the RoadRunner framework, for fair
comparison.

A. Platform

The evaluation was conducted on an Intel Core i-7-3770K
(quad core) CPU 3.50 GHz machine with 16GB RAM and
operating system 64-bit Ubuntu 12.4.

B. Benchmark Configuration

We selected 11 multithreaded programs from PJBench:
avrora, luindex, lusearch, sunflow, batik, cache4j, elevator,
hedc, sor, tsp and weblech. Table I gives a brief description
of these programs.

Table III
THE NUMBER OF READ/WRITE ACCESSES

Program Write (×106) Read (×106) Total (×106)
avrora 394 906 1300
sunflow 787 7000 7787
luindex 65 207 272
lusearch 228 929 1157
Average 270 1593 1863

C. Performance Comparison

Table II shows the number of reported data races and the
execution overhead for SimpleLock and the two detectors.
Execution overhead is the ratio of the instrumented running
time to uninstrumented running time of the benchmark
programs. We tested two SimpleLock variations, differentiated
by Q_LEN: 1 (SL) and limitless (SL’). The default value of
Q_LEN for SimpleLock is one. We performed 10 executions
with the same input and calculated the average for each
result. The number of reported races across consecutive runs
was the same, and variability was less than 10%.

Race Warnings
The number of data races reported by the all hybrid detec-

tors (SL, SL’ and and AL) was always greater than or equal
to that of FastTrack. Of note here is the fact that SimpleLock
detected exactly the same data races as Acculock-Multi, which
was a subset of those detected by FastTrack. Acculock-Multi is
an accurate data race detector that removes false positives with
multiple locking of shared variables. Therefore, SimpleLock
provides broader coverage than FastTrack and its accuracy is
comparable to that of AccuLock-Multi.

Because SimpleLock and Acculock-Multi detected the
same data races, our first assumption, "most of data races are
caused by accesses to shared variables not protected by lock",
is valid. Further, SL and SL’ detected the same data races
although they have different queue lengths (Q_LEN). This
means that our second assumption, "the distance between
accesses causing a data race is not long", is also valid.

Performance Slowdown
In addition to the broad coverage provided by SimpleLock,

its execution overhead was also remarkably lower than that
of AccuLock-Multi and just 1.34 times higher than that of
FastTrack on average.

In the case of sunflow, SimpleLock generated the highest
overhead. The cause of this overhead is the number of accesses
to Wx[t] and Rx[t]. Table III shows the number of read/write
accesses for four benchmark programs that had relatively high
overhead. Among them, sunflow had the highest number of
read/write accesses to shared variables.

We reduced the execution overhead using a fixed-sized
queue, used for keeping a list of the minimum number of locks
that have protected read/write access to each shared variable
by a thread during the same clock period, and replaced lockset-
intersection, used for checking for the existence of a lock.

VI. RELATED WORK

Much research has been done on dynamic data race de-
tection. Dynamic analysis techniques can be categorized into
Lockset-based detectors, Happens-before detectors, and hybrid
detectors. Lockset-based detectors are based on the Lockset
algorithm of Eraser [2], which generates false positive but is
not very sensitive to thread scheduling. Happens-before de-
tectors detect data races by verifying happens-before relations
represented using vector clocks (VCs).

Prior to the proposal of FastTrack [3], the cost of VC
operations was very high with in the Djit+ detector [4], [13];
each VC required O(n) storage space and O(n) time. For this
reason, happens-before detectors were not commonly used.
Consequently, many detectors with lower performance over-
head and lower false positive rates were proposed [14], [15].
The shortcoming of this strategy, however, is the possibility of
introducing quite a number of false positives or false negatives.

LiteRace [16] is a precise and lightweight happens-before
data race detector that utilizes an adaptive sampling technique
that samples and analyzes only selected portions of a pro-
gram’s execution to reduce runtime overhead and minimize
the number of missing data races.

FastTrack is a pure happens-before detector that has low-
ered the analysis overhead of almost all VC operations and
the storage requirements from O(n)-time to O(1)-time. This
improvement results from the replacement of heavyweight
vector clocks with an adaptive lightweight representation
called epoch that requires only constant-space and constant-
time operations. With FastTrack, the execution overhead of
happens-before detectors has become comparable to that of
Eraser. Subsequent to the introduction of FastTrack, several
techniques to lower runtime overhead and extend detection
coverage has been proposed.

Pacer [17] uses a sampling technique like LiteRace, but is
based on FastTrack. It detects any data races at a rate equal
to the sampling rate by finding data races whose first access
occurs during a global sampling period. It reduces runtime
overhead by avoiding nearly all O(n) operations during non-
sampling periods. However, like other sampling-based detec-
tors, Pacer may miss some data races.

ACCULOCK [8] tries to make up for the scheduling
sensitivity of happens-before detectors by combining Lockset
and the epoch-based happens-before algorithm. It analyzes a
program’s execution by reasoning about the subset of happens-
before relations observed with lock acquisition and releases
excluded. Although ACCULOCK provides low overhead that
is comparable with FastTrack, it is prone to reporting false
positives because it cannot exactly trace accesses that are
protected by multiple locks. In addition, it misses some races.
ACUULOCK-Multi [9] solves these problems, but is three
times slower than FastTrack on average for the 11 benchmark
programs.

VII. CONCLUSION

One of the difficulties of finding data races comes from their
irregular occurrence, even with the same input, and a lack of

fast and accurate detection tools that have broad coverage.
SimpleLock is a novel dynamic detector that provides broad
coverage and a low execution overhead. SimpleLock’s high
performance stems from its use of the epoch-based representa-
tion of vector clock from FastTrack, the simplified Lockset that
only checks for the existence of accesses protected by no locks
and the fact that the distance between two accesses causing
a data race is not long. We implemented and evaluated the
effectiveness of SimpleLock only for Java programs. However,
the proposed algorithm may be useful for C/C++ multithreaded
program analysis.

REFERENCES

[1] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some
issues and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1, no. 1,
pp. 74–88, Mar. 1992.

[2] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs,” ACM
Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[3] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic
race detection,” SIGPLAN Not., vol. 44, no. 6, pp. 121–133, Jun. 2009.

[4] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race detection
in multithreaded c++ programs,” in Proceedings of the ninth ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
ser. PPoPP ’03, 2003, pp. 179–190.

[5] M. Christiaens and K. De Bosschere, “Trade, a topological approach
to on-the-fly race detection in java programs,” in Proceedings of the
2001 Symposium on JavaTM Virtual Machine Research and Technology
Symposium - Volume 1, ser. JVM’01, 2001, pp. 15–15.

[6] E. Schonberg, “On-the-fly detection of access anomalies,” in In Pro-
ceedings of the SIGPLAN 1989 Conference on Programming Language
Design and Implementation, 1998, pp. 285–297.

[7] S. L. Min and J.-D. Choi, “An efficient cache-based access anomaly
detection scheme,” in Proceedings of the fourth international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS IV, 1991, pp. 235–244.

[8] X. Xie and J. Xue, “Acculock: Accurate and efficient detection of
data races,” in Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’11, 2011,
pp. 201–212.

[9] J. Z. Xinwei Xie, Jingling Xue, “Acculock: accurate and efficient
detection of data races.” Softw: Pract. Exper., 2012.

[10] C. Flanagan and S. N. Freund, “The roadrunner dynamic analysis
framework for concurrent programs,” in Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, ser. PASTE ’10, 2010, pp. 1–8.

[11] “Parallel java benchmarks,” https://code.google.com/p/pjbench.
[12] F. Mattern, “Virtual time and global states of distributed systems,” in

Parallel and Distributed Algorithms, 1989, pp. 215–226.
[13] E. Pozniansky and A. Schuster, “Multirace: efficient on-the-fly data race

detection in multithreaded c++ programs.” Concurrency and Computa-
tion: Practice and Experience, vol. 19, no. 3, pp. 327–340, 2007.

[14] C. von Praun and T. R. Gross, “Object race detection,” in Proceedings of
the 16th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ser. OOPSLA ’01, 2001, pp. 70–
82.

[15] H. Nishiyama, “Detecting data races using dynamic escape analysis
based on read barrier,” in Proceedings of the 3rd conference on Virtual
Machine Research And Technology Symposium - Volume 3, ser. VM’04,
2004, pp. 10–10.

[16] D. Marino, M. Musuvathi, and S. Narayanasamy, “Literace: effective
sampling for lightweight data-race detection,” SIGPLAN Not., vol. 44,
no. 6, pp. 134–143, Jun. 2009.

[17] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: proportional
detection of data races,” in Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation, ser.
PLDI ’10, 2010, pp. 255–268.

